Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.

نویسندگان

  • Tuo Wang
  • Roman Vaxenburg
  • Wenyong Liu
  • Sara M Rupich
  • Efrat Lifshitz
  • Alexander L Efros
  • Dmitri V Talapin
  • S J Sibener
چکیده

The electronic structure of single InSb quantum dots (QDs) with diameters between 3 and 7 nm was investigated using atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS). In this size regime, InSb QDs show strong quantum confinement effects which lead to discrete energy levels on both valence and conduction band states. Decrease of the QD size increases the measured band gap and the spacing between energy levels. Multiplets of equally spaced resonance peaks are observed in the tunneling spectra. There, multiplets originate from degeneracy lifting induced by QD charging. The tunneling spectra of InSb QDs are qualitatively different from those observed in the STS of other III-V materials, for example, InAs QDs, with similar band gap energy. Theoretical calculations suggest the electron tunneling occurs through the states connected with L-valley of InSb QDs rather than through states of the Γ-valley. This observation calls for better understanding of the role of indirect valleys in strongly quantum-confined III-V nanomaterials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembled InSb and GaSb quantum dots on GaAs(001)

Quantum dots of InSb and GaSb were grown on GaAs~001! by molecular-beam epitaxy. In situ scanning tunneling microscopy measurements taken after 1–2 monolayers of InSb or GaSb growth reveal the surface is a network of anisotropic ribbon-like platelets. These platelets are a precursor to quantum dot growth. Transmission electron microscopy measurements indicate that the quantum dots are coherentl...

متن کامل

Shell-Tunneling Spectroscopy of the Single-Particle Energy Levels of Insulating Quantum Dots

The energy levels of CdSe quantum dots are studied by scanning tunneling spectroscopy. By varying the tip−dot distance, we switch from “shell-filling” spectroscopy (where electrons accumulate in the dot and experience mutual repulsion) to “shell-tunneling” spectroscopy (where electrons tunnel, one at a time, through the dot). Shell-tunneling spectroscopy provides the single-particle energy leve...

متن کامل

Ion exchange growth of Zinc Sulfide quantum dots in aqueous solution

We report the growth by ion exchange synthesis of ZnS nanoparticles in MCM-41 matrices using Zn (CH3COO)2 and Na2S starting sources. The final product (ZnS/MCM-41) was characterized by X-ray diffraction (XRD) pattern, transmission electron microscopy (TEM), scanning electron microscopy (SEM), infrared spectrometry (IR) and UV-vis spectroscopy. Its crystalline st...

متن کامل

Ion exchange growth of Zinc Sulfide quantum dots in aqueous solution

We report the growth by ion exchange synthesis of ZnS nanoparticles in MCM-41 matrices using Zn (CH3COO)2 and Na2S starting sources. The final product (ZnS/MCM-41) was characterized by X-ray diffraction (XRD) pattern, transmission electron microscopy (TEM), scanning electron microscopy (SEM), infrared spectrometry (IR) and UV-vis spectroscopy. Its crystalline st...

متن کامل

Energy Levels of InGaAs/GaAs Quantum Dot Lasers with Different Sizes

In this paper, we have studied the strain, band-edge, and energy levels of cubic InGaAs quantum dots (QDs) surrounded by GaAs. It is shown that overall strain value is larger in InGaAs-GaAs interfaces, as well as in smaller QDs. Also, it is proved that conduction and valence band-edges and electron-hole levels are size dependent; larger QD sizes appeared to result in the lower recombination...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2015